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Abstract. An instability of a ferromagnetic state in quantum spin systems induced by a two- 
particle bound-state condensation is shown to produce, for S > 2, a ferrimagnetic ground 
state with a quantized (S, = S - 1) value of spontaneous magnetization per site. For low S, 
instead, the ground state below the instability has zero net magnetization, while a s p n -  
taneous symmetry breaking reveals itself in quadratic, cubic, or both quadratic and cubic 
correlations for S = 1.2 or I, respectively. The role of quantum fluctuations and the reori- 
entation process in a magnetic field are examined. 

1. Introduction 

In the past few years there has been considerable interest in the study of unusual ground 
states in quantum isotropic magnetic systems with polynomial exchange interaction 
between nearest neighbours. For example, it was shown [14] that the transition from 
ferro- to antiferromagnetic ordering in the generalized spin S = 1 model may occur via 
the intermediate so-called spin nematic phase with unbroken time-reversal symmetry, 
but with spontaneously broken symmetry with respect to quadrupolar correlations 
((S:) = (S;) f (S3, (S) = 0). 

The generic spin S exchange Hamiltonian is a polynomial of order 2 S ,  

where all the exchange integrals .I,, are generally of the same order of magnitude. The 
general phase diagram in a (2s - 1)-dimensional parameter space involves different 
phases. One of them is evidently a ferromagnetic phase. For trivial reasons, it definitely 
realizes a ground state when the energy of a separate pair of spins E$ has a minimum for 
a total spin equal to 2s. We wish to study what phase replaces a ferromagnetic one 
when the minimum of E$ shifts from S = 2s. 

Strictly speaking, the crossing of the energy levels for a separate pair of spins is a 
necessary but not a sufficient condition for the replacement to occur. However, in this 
paper we will restrict ourselves to the case when the crossing first occurs between Ezr 
§ Present address: University of Illinois at Urbana-Champaign, Loomis Laboratory of Physia, 1110 West 
GreenStreet,Urbana, IL61801,USA. 
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and the energy level corresponding to a neighbouring set of symmetrical con- 
figurationsofaseparatepairofspins.Theequality E,s = Es-zisknown [5] to beexactly 
a condition for the two-particle bound states to undergo softening at k = LT, and thus 
the level crossing really produces the change in the ground state. 

Moreover, as the replacement occursvia a hysteresis-free first-orderphase transition 
[1-4], the new ground-state wavefunction can be recognized exactly at the critical line 
in parameter space, where there is no zero-point motion at all. The problem however is 
toselect amongawhole familyofstates minimizingtheenergy at the first-order transition 
line a true one which will determine the ground state immediately below this l i e .  
Quantum fluctuations can then be included by constructing a perturbation theory with 
the small parameter indicating the closeness to the transition [3.4]. 

We begin with a simple exercise in a spin algebra with the aim of finding the most 
probable ground-state candidates for variousspin values. Let usconsider a separate pair 
of spins S wzith isotropic polynomial interaction. With the condition E2s = EZs-?. all the 
symmetrical configurations Y,,z with /$,I > 2s - 4 are ground states. Once the aim is to 
find a macroscopic wavefunction, we are forced to restrict ourselves to only those Yl,z 
which can be represented as a product of the single-site wavefunctions 

(the total Y is thengiven by Y = rI,Y,). 

possible to restrict ourselves to only one sign of 9,. say s, > 0. The required 
easily be constructed. It involves a one-parameter family of Y: 

with j arbitrary. 
For evident reasons, it is likely that the state furthest from the ferromagneticone is 

the ground state immediately below the critical line. For S > 2 this state proves to be a 
quantum/errimagnerwith Y; = IS - 1) (and hence (Si) = S - 1, (S:) = (SF)  = 0). 

For S s 2 the number of candidates for Y increases. For S = 2 in addition to 
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Y 1.2 = Yl .Y, (2 )  

For S > 2 .  Y,,2 docs not mix the states with positive and negative $, and it is thus 
can 

‘P = (1s) + j lS  - 1))/(1 + j2)lj2 (3) 

@(‘I  = (12) +ill))/(] + j?)’” 01 W2) = (1-2) + jl-1))/(1 + j 2 ) I l 2  (4) 

Yt3) = (12) +AI - 1))/(1+ A 2 )  ”’ ( 5 )  

one has 
and W4) = (1 -2 )  +AI I))/( 1 +A) ‘1’. 

The first two functions describe magnetically ordered states ((S:) # 0) and produce 
a ferrimagnetic state as a candidate for the ground state below the transition, while with 
*(3),(4) one can also achieve non-magneticground states with (S) = 0. 

In the latter case, A z  = 2. quadrupolar symmetry is also unbroken, (S,$) = 
6,S(S + 1)/2, and the spontaneous symmetry breaking reveals itself in cubic corre- 
lators. Thus. for @(3) and A = g2. in addition to the usual paramagnetic contribution, 
(Sisi&) = kiik ( E  is an antisymmetric tensor), one has 
(S:) = 2 (S:) = d 2  (s:) = 0 (SIS,) = (S;S,) = 1 
(S&) = - v 2  (S:S,)=o ~~ (S:S,) = (SZS,) = 0. (6) 

By rotating the coordinates, the cubic correlation function can be made symmetric with 
respect to the coordinate frame. 

where piii = 0 and pi,, = pi,,. 
(s isisk)  = ir,ik + ~ ‘ 3 p , ~ ,  (7) 
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Figure 1. A visual interpretation of a tensor magnet, cos # = &. Inset: a projection onto the 
XY plane. In a crude approximation the classical unit vectors can be conceived as S = 1 
constituentsof.9 = 2. Withthisarrangement,spincorrelations(6) arecompletelyreproduced 
by (8) 

Hereafterwe will refer to thisstructureasa tensor magnet [6]. Avisualinterpretation 
of (6) is given by a set of four unit vectors, de) (CY = 1, . . ., 4), arranged in the form of 
a tetrahedron (figure 1). With this arrangement, (6) is completely reproduced if we take 

withA = # a n d B  = -%. 
As is clearly seen from figure 1, the order parameter is a coordinate frame and the 

low-energy sector thus contains three gapless excitations. Since (6)  is an exact ground 
stateimmediately at the critical line, it thus follows that fors = 2atwo-particleinstability 
is accompanied by another instability, which is evidently a three-particle one. The 
ferrimagnetic state is not contrived in this additional symmetry breaking and therefore 
seems to be unstable below the transition, thus leaving a tensor magnet as the only 
probable candidate for the ground state. 

W) = (1%) + jlt))/(l + j2) ' / '  

Y ( 3 )  = (I$) + A/-2))/(1 + A 2 ) l i Z  

Y ( 5 '  = (1%) + Dl-%))/(l + p ) ' R  

For S = + t h e  single-site wavefunctions are 

W2) = (I-$) + j l - $ ) ) / ( ~  + j2)I" 

W 4 )  = (I- 4) + Ali))i'(l + AZ)@ (9) 

withj,AandParbitrary.Thelirst twoagainfavouraferrimagneticstate(S,) = +2, while 
the remainder produce one and the same (up to redefinition of the coordinates) non- 
magnetic state with spontaneously broken symmetry with respect to both quadratic and 
cubic correlators: 

(S) = 0 (S,S,) = sa,, +$a,, 
(sg) = a  (s;S,) = -2 (s:S,) = 0 (10) 

(s;) = 0 (s:S,) = 0 (s:s,) = 0 
(we choose Yf5) and p = 1). 

A visual interpretation of the symmetry properties of (10) is given by a set of three 
unit vectors de) (CY = 1,2 ,3)  arranged in a 120" structure in the XY plane and linked 
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Figure 2. The same as in figure 1 but for S = 1, 

with the XY spin correlators in the same way, equations (8 ) ,  as for S = 2 ,  but with 
A = 4 and B = 1 (figure 2) .  

Note that, whilecubiccorrelatorsarecompletelyreproducedbythisclassicalpicture. 
for quadrupolar correlators it only points to the existence of a single selected axis. 

The low-energy theory of (10) again contains three gapless excitations. indicating 
that this state is likely to win a competition with the ferrimagnetic state. As was shown 
in [4], this really happens for S = 2.  

@ c l )  = (11) + jlo))/(l + j 2 ) ’ ”  

F 3 ’  = (11) + Al-l))/(l + A*)”2. 

For S = 1 the required single-site wavefunctions are 

W’) = (1-1) +jlo))/(l  + j’)”’ 
(11) 

They produce the only candidate for the ground state below the instability-a non- 
magnetic configuration with unbroken time-reversal symmetry but wlth spontaneous 
symmetry breaking with respect to quadrupolar correlations (spin nematic): 

(S) = 0 W,) = 6 ,  - 6,, (12) 
(we choose Yc’.‘) with j = m). 

In many respects this state resembles an antiferromagnetic one [2]: a visual inter- 
pretation of the symmetry properties. in the sense of (8). is given by two antiparallel 
unit vectors. The only difference i s  that they both belong to the same site and, hence, 
the inversion does not produce a new physical state (the order parametcr space is 
isomorphic not to the surface of a unit sphere, SI, but to a projection plane. PI). 

2. ‘Spin-wave’ theory 

A simple exercise in spin algebra allows us to find, for various S, the most probable 
configurations replacing the ferromagnetic one after it  becomes unstable. For S = 8 and 
S = 1 it has already been proved [ I 4 1  that the unusual long-range order, discussed 
above. survives the presence of quantum fluctuations. Now we want to prove that this 
is also the case for higher values of S. 

The standard way to do this is to construct the bosonic excitations above the selected 
configurations. However, all of them presume non-saturation of the site magnetization 
even in the absenceofmacroscopic zero-point vibrations,and henceordinaryprocedures 
linking spin operators with a single bosonic field (e.g. Holstein-Primakoff trans- 
formation) are invalid. Meanwhile. it is always possible to link spin operators of spin S 
with 2s bosons in that any desired single-spin configuration would be a state with no 
bosons [3 ,4,7,8] .  The corresponding transformations are organized in such a way that 
commutation rclations together with the constraint for $* are satisfied on the physical 
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subspace formed by a vacuum state and 2S states with a single excited boson, and the 
matrix elements between physical and non-physical states are constructed to be zero. 
With the last condition these transformations are exact at zero temperature for the same 
reasons as the Holstein-Primakoff one. 

Moreover, the presumed mean-field configurations realize exact ground states at the 
critical lines. Hence. the closeness to the transition indicates a small parameter of the 
problem (small density of particles in the usual bosonic language). 

We begin with S > 2,  when the mean-field approach favours a ferrimagnetic state, 

The general transformation will involve 2s bosons. Close to the transition most of 
them have a finite gap and thus decouple from the low-energy sector discussed below. 
Only two modes are gapless at the critical line. One of them is the usual spin-wave mode 
and the second is a two-particle collective excitation with k = 22 [5].  Starting from S, = 
S - 1, these two excitations tend to change S, by rtl. 

If we restrict ourselves to the exact coefficients for only soft bosons, the general 
transformation adjusted to the ferrimagnetic state can be written as 

(S,) = s - 1. 

S, = S -  1 + a f a -  b i b + .  . . 
S+ = (2S)’’2a’U + [2(2S - l )]’ /2Ub + . . . (13) 
s- = (SS)* U 2 = 1 - a + a - b + b -  . . .  

where the dots stand for the contributions from other bosons. For a Heisenberg inter- 
action (J,S,S,, only), knowledge of (13) is enough to write down the Hamiltonian up 
to quadratic order in a and b bosons. In the general case of polynomial interaction this 
is no longer possible. However, the character of the transition implies that exactly at the 
critical line offerromagneticinstability, 6 = J, + Zz=2 enJ, = 0, the low-energysector 
contains two gapless excitations with no anomalous term present. This justifies a k = 0 
substitution Jl directly by 6 for k = 0 excitations while passing from Heisenberg to 
polynomial interaction. The part of (1) that is quadratic in bosons thus reads 

H = C a : a k [ 2 6 ( 2 S - I ) + A ( 1  - y k ) ] + b : b r [ 2 6 S + ~ ( 1 - y k ) ]  
k 

+ 26[s(2S - 1)]”*yk(a:bTk + axb-k) (14) 

where 6 is positive below the transition (it is presumed that 6 1). A (non-universal) 
stands for the inverse effective mass and y x  = z-’ZA, exp(ikA,), where At is a vector 
linking a given spin with one of its z nearest neighbours. 

The diagonalization of (14) gives two ‘spin-wave’excitations. One of them, w,(k) ,  is 
gapless and quadratic ink for low momenta, which occurs for any isotropic system with 
non-zero spontaneous magnetization. The other, w,(k), acquires a finite positive gap 
for 6 > 0, 

w2(k = 0) = 26(S - 1). (15) 
The spin-wave theory thus confirms the mean-field proposal about the ground state 
below the transition. Moreover, (a’a) = (b+b), ensuring that (S,) 3 S - 1 even in the 
presence of zero-point fluctuations. 

Consider next the phase diagram in a magnetic field. IC proves to be practically the 
same as for classical ferrimagnets. In fact, the application of the field adds -U to a:ak 
and+Hto  b:bk. 
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HkA Nematic p-i-cJ 
phase 

Femmagnet 

6 

I IM I 

Nematic 
phase 

Ferrimagnet 

6 
Figure3. Phasediagraminthe6,HpIaneforS> 2,Inset:fielddispersionufthelongitudinal 
magnetization. The lints denote: (A) H = Hi" = Z(S - 1). spin-flop field; (B) 
ti = H!.2' = US, saturation field. 

Diagonalization then gives w , ( k  = 0) = H ,  yielding an ordinary precession of the 

(16) 

magnetization, while 

o , ( k  = 0) = 2 8 ( S  - 1) - H .  

It then follows that a quantum ferrimagnetic state with fixed (S,) = S - 1 remains 
unchanged up to 'spin-flop' field 

Hi'' = 26(S - 1). (17) 

In higher fields, the longitudinal magnetization grows with the field and reaches satu- 
ration at 

HL') = 26s. (18) 

This spin-flip field value can also be obtained by using the same transformation as (16) 
but adjusted to a ferromagnetic ordering (S, = S - at ,  - 2b+b + , . .; St = 
(2S) l~zUa  + [2(2S - I)]l"a+b f .  . .). Hi') occurs as the point where the gap in the b- 
boson excitation specrum disappears. 

Between HI')  and Hp1 the quadrupolar symmetry with respect to the transverse spin 
components is spontaneously broken due to the non-zero condensate of w 2  quasi- 
particles ((S: S,+) # and the low-energy spectrum thus contains a gapless branch 
of excitations. 

The phase diagram in the 6, H plane together with the field dispersion of the 
magnetization are presented in figure 3. 

We now turn to the special cases of low S and begin with S = 2, where the mean-field 
and symmetry arguments favour the tensor-like ordering (6) and (7). 

The (presumed) additional'softening at the transition forces us to write down an 
exact transformation to bosons. For a tensor-like ground state it  can be chosen as follows 
(the site index is omitted): 

S, = . \ /2(atd+ d i u )  + c + c -  a t a +  .\/2(ctU+ Uc) 

S, = (ST) = f i [ f i ( b  U + Ua) + (a+ 6 - b+ c) + .\/2(ct d + d+ b)] 

where,asusual,Uz= 1 - u t a -  b + b - c + c - d t d .  

~~~ ~~ 
~~ 

(19) 
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The unusual form of (19) comes from the fact that the proposed vacuum state, as in 
(5)  with A 2  = 2 ,  involves different z projections. One can make sure that all the required 
conditions are satisfied in a physical subspace and the state with no bosons is specified 
by (6 ) .  

The S = 2 polynomial model normally contains four terms 

A condition for the instability of a ferromagnetic state to occur due to the softening 
of the two-particle bound states specifies a line 

1 + p + 1 3 y +  25p = O  (21) 
along which the following inequalities must be fulfilled: 

1 + 4 p  + 167 + 64p > 0 

1 - p + 217 - 41p Z 0 (22) 
1 - 2 p  + 28y - 104p > 0. 

As can he easily checked, (22) is satisfied in some region of parameters fitting (21).  
A bosonic spectrum of (20) obtained with the use of (14) contains one decoupled d 

excitation with a finite positive gap and three massless excitations associated with the 
broken SO(3) symmetry. 

Hz = 4x (atah + blbk + C $ C k ) [ 6  + h(l  - Y h ) ]  

Up to quadratic order in bosons the low-energy part of the Hamiltonian reads 

h + 6 y k [ a : b f l  + a k b _ h  + ( c : c t k  + C ~ C - ~ ) / ~ ]  (23) 
where 6 = -(1 + p + 25p)  and h = 1 + /3 + l l p  near the critical line (to simplify the 
calculations, we put y = 0). 

Diagonalization produces three idenricd gapless branches with low-k dispersion, 
w = ok, where the spin-wave velocity reads 

U = 4(26h/z)”* (24) 
and z is the number of nearest neighbours. 

The positiveness of U as well as of the d boson gap ensures the stability (at least, 
locally) of the tensor-like state helow the transition. 

The interactions between gapless bosons fit the Adler principle and thus do not 
destroy linearity in k of the dispersion relation. They do, however, considerably renor- 
m a k e  the spin-wave velocity value since even in the vicinity of the critical line it is only 
the density of quasiparticles that is small for S Q 1; the interaction between bosons is 
always strong. The exact expression for o can he obtained even without calculations 
since exactly at the critical line one of the excitations is a conventional ferromagnetic 
spin wave. Thus the renormalized h must coincide with 1 + 4p  + 16y + 64p,  and since 
the relative corrections to S are small for 6 Q 1 ,  the renormalied spin-wave velocity 
reads 

U = 4 ( 2 6 / ~ ) ” ~ ( 1  + 4p  + 16y + 64p)’I’. (25)  
Strictlyspeaking, exact knowledgeof oislessimportant than the fact that anharmonic 

terms do not distinguish between three types of bosons and threefold degeneracy of 
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the spectrum thus survives the perturbative corrections. As an obvious consequence, 
quantum effects do not break the quadrupolar symmetry: 

A V Chubukov et ai  

( S i ) = 2 + ~ ( c k + c h ) + ( a : a k ) - 2 ( b ; b k ) 1 2 .  (26) 
k 

As expected, the second possible candidate for the ground state-a ferrimagnetic 
configuration-proves to be unstable For 6 > 0. To see this, we introduce bosons in the 
same way as in (13): 

S ,  1 + a+a - bib - 2dtd - ~ c ’ c  
(27) 

S +  = ( S - ) *  = 2a+U + 6 U b  + 6 b + d  + Zd+c. 

The substitution of (27) into (20) results in a bosonic Hamiltonian where one bosonic 
field has a finite positive mass while the remainder are gapless along the critical line. 
Below the instability the low-energy part of the Hamiltonian, quadratic in bosons, reads 

(28) H =  x A r ) a Z a h  +Af’b;b, + B,(a:bt, +,akb-k)+Ap)c:Ck 
h 

with 

A V ’ = 6 6 + A j ( I - y )  A:’ = 46 + A 2 ( 1  - yh) 
(2% 

*‘3’ k - - -66 + %3(1 - y a )  B,  = 2 6 6 y k  A; > 0. 

The negativenessofil:;) = -66 ensures theinstability ofthe ferrimagneticstate immedi- 
ately below the transition, which confirms the initial conjecture. 

Now we shall discuss the effect of magnetic field. It seems natural to expect that the 
zero-fieldsusceptibility hasamaximumforthe most symmetricconfigurationoffour unit 
vectors on figure 1 with respect to the magnetic field direction. Then the reorientation 
process would be continuous with unit vectors turning to the field like the petals of 
flowers.Thisconfigurationcaneasily be foundandin thecaseofamagneticfielddirected 
along z axis is characterized by only two non-zero cubic correlators: 

(STS,) = A  (StS,) -A A’ = 3. (30) 

The application of the field leads to ( S , )  = H/26. The low-energy spectrum constructed 
above (30) evidently contains a gapless branch reflecting the symmetry breaking in the 
XYplaneanda branch with w ( k  = 0) = H yieldingaprecessionof themagneticmoment 
about the field direction. 

Surprisingly, in the ‘spin-wave’ approximation the third branch also proves to be 
gapless for H # 0, though this is not dictated by any kind of broken symmetry. 

The situation resembles that in ?D triangular antiferromagnets [%Ill where the 
‘classical’ spectrum in the magnetic field also contains accidental gapless modes. This 
additional softening is a purely classical phenomenon; quantum fluctuations are known 
[ l l ]  to lift the accidental degeneracyt. However, thispeculiarityofthe ‘classical’system 
points out that the means of reorientation is governed by quantum fluctuations and may 
differ significantly from the initially expected most symmetric one. 

In  ZD triangular antiferromagnets quantum fluctuations favour reorientation via the 
intermediatecollinearferrimagneticphase. Thismay alsobe the case for tensormagnets. 
t Thisisalso thecaseforsomefrusuatedmagneticrystemsinzerofield[12-14]. Theliftingol theaccidental 
degeneracy by quantum Ruetuationais known as ‘ordering from disorder’ [lS]. 
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To investigate this possibility, we must calculate the spectrum above the ferri- 

Adding the Zeeman terms to (28) as dictated by (27) 
magnetic state ((S,) = 1) in the presence of the field. 

= 3H (31) 

w l - H  ~2 = 2 6  - H ~3 = 3 ( H  - 26). (32) 

6A“)  = -H SA (2) = H 

and performing a diagonalization, we obtain in the limit of k +  0: 

The ferrimagnetic state thus proves to be stable (in the spin-wave approximation) 
along a line H = 26, where w 2  and m3 are simultaneously gapless. Its ‘classical’ energy 
at H = 2S is equal to that of the most symmetric configuration and thus, at exactly H = 
26, the ferrimagnetic configuration belongs to a family of classically degenerate ground 
states. 

Note that, although in the spin-wave approximation w 2  and w3soften along the same 
line, H = 26, the instabilities governed by wz and wj are of completely different nature. 
Really, w 3  is the energy of uncoupled c bosons and it follows from (27) that the 
condensation of these excitations produces a symmetry breaking with respect to cubic 
correlators. In contrast, w z  excitations are created by mixed a and b bosons and the w2 
condensation produces a symmetry breaking with respect to quadrupolar correlators 
((S:) # (Sj)). Hence, in the real system, with quantum fluctuations present, there are 
absolutely no reasons for both transitions to occur at the same field value. 

In ZD Heisenberg triangular antiferromagnets, where the classical scenario is exactly 
the same, quantum fluctuations were shown [ll] to stabilize a collinear ferrimagnetic 
phase in afinire region of fields. Inside, all the excitations acquire finite gaps since no 
continuous symmetry is broken. 

In principle. the same calculationscould be performed in the present case. However, 
for technical reasons it proved to be simpler to investigate what kindof broken symmetry 
is realized immediately below the ferromagnetic instability in the presence of the field. A 
symmetry breaking with respect to cubiccorrelators wouldevidently lead toa continuous 
reorientation terminating in the symmetric arrangement (30), while the instability with 
respect to quadrupolar correlators would produce a reorientation via an intermediate 
collinear (i.e. ferrimagnetic) phase since different symmetries would be broken at H = 
0 and near saturation. 

An analysis implies use of a transformation adjustable to the S = 2 ferromagnetic 
state. It reads 

S, = 2 - a+a  - 2b tb  - 3c+c - 4dtd  

S_ = ( S + ) *  = 2 a t U + V % b t a + V % c c + b + 2 d + c  
(33) 

where, as usual, U‘ = 1 - a+a - b + b  - c+c  - d t d .  
To quadratic order in bosons, the Hamiltonian (20) is 

H = E i l Y ) a $ a k  +AF)b$bk  + A f ’ c $ c h  + A f ’ d f d k  (34) 
k 

where A?) has a finite positive gap for small 6 and H ,  while 

A:) = H + h(1 - y k )  

A t )  = 2(H - 46)  + A ( 1  - y p )  (35) 
A(’) k - - 3(H - 46)  + A ( 1 -  yr) 
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I Q  I I b I  

/ Ferromagnet 

FigureJ.(n)Phasediagramon6,HplaneforS = 2,ThelinerAandBdenote theboundaries 
ofthe intermediate ferrimagneticphase. In the spin-wave approximation they bothcoincide 
with H = 26.TheliniteregionoftheIerrimagneticphaseiscreated byquanlumfluctuations. 
The saturation field (line C) is H = 46. (b)  Magnetization versus magnetic field curve. In  
between H I  and Hi the longitudinal magnelization is exactly equal to one-half of the 
saturation value, 

andA =4(1 + 4/3+ 16y+ 64p) .  
As expected, if we restrict ourselves to quadratic order. then the two-particle (b  

boson) and three-particle (c boson) instabilities occursimultaneously, at H = 46, due to 
accidental degeneracy. We must investigate how this degeneracy is lifted by anharmonic 
corrections. 

I n  the usual spin-wave theory the possibility to develop a perturbative approach for 
spin-wave interactions is associated with the smallness of l/s. The present approach 
does not contain such a small parameter and thus, strictly speaking, no exact result can 
be obtained. However, we believe that even the lowest-order anharmonic corrections 
will give a qualitatively correct description of the effects due to quantum fluctuations. 

The lowest-order anharmonic terms are of cubic origin. Those which renormalize 
the spin-wave frequencies at k = 0 are 

H 3  = 2 6 6  (a:aZkbo + a:btkco)y,  + HC. (36) 
k 

The second-order corrections shift the critical fields of b and c excitations to 

2 ( H ,  - 46) - (246?/A)I = 0 3 ( H ,  - 46) - (126’/A)I= 0 (37) 

where, in three dimensions, I = W - 1 and W = X k  1/( 1 - yk) is a Watson integral [ 161. 
It follows from (37) that a two-particle instability passes ahead of a three-particle 

one and the reorientation for S = 2 thus follows the scenario stipulating an intermediate 
ferrimagnetic phase with a magnetization equal to a half of the saturation value (even 
in the presence of quantum fluctuations). 

The phase diagramin the H, 6 plane together with themagnetization versusmagnetic 
field curve are presented in figure 4. 

Note that the low H stage of the reorientation process can be conceived as a con- 
tinuous turn of the three unit vectors in figure 1 to the field direction, which for a given 
arrangement is presumed to coincide with the z axis, while the fourth spin will remain 
antiparallel to the field. However, in contrast to a 2D triangular antiferromagnet. the 
high-field phase cannot be visualized as a phase with three parallel spins. 
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Consider next the case of S = 9. The zero-field structure has already been established 
in [4]: it is a non-magnetic state (10) with spontaneously broken symmetry with respect 
to both quadratic and cubic correlators. Here we will focus on the behaviour in non-zero 
magnetic field H =Hz. As is seen from figure 2,  the natural way of reorientation is when 
a triad of unit vectors simultaneously turn towards the field direction. This implies 
that in a non-zero field a spontaneous symmetry breaking reveals itself only in cubic 
correlators. 

However, a calculation of the excitations above this state in a spin-wave approxi- 
mation again gives an accidental gapless mode, thus pointing out that the real way of 
reorientation is governed by quantum fluctuations and may be completely different. By 
analogy with the S = 2 case, one may also propose that the reorientation is accompanied 
by an intermediate ferrimagnetic phase with (S,) = 4, especially as the spin-wave cal- 
culationspredict the ferrimagnetic state to remain stable (with twogapless modes) along 
H = 8 (where 8 stands for a shift from a critical line for the S = 3 version of (20) with 
p = 0). However, the situation is different from S = 2 in that the symmetric way of 
reorientation discussed above is the only one where the symmetry with respect to 
quadrupolar correlators can be preserved. All the other ways immediately imply 
(S:) # (S;), and hence one and the same symmetry is broken at low and high fields. 
Thus, there are no physical reasons to expect any intermediate phase to exist. The only 
question to answer is which type of reorientation (symmetricor with symmetry breaking 
with respect to the quadrupolar correlators) is favoured by quantum fluctuations. To 
answer this we will again investigate what kind of broken symmetry is realized immedi- 
ately below the ferromagnetic instability in the presence of the field. 

Linkingspin operators with bosons by 

Si = 9 - a t ,  - 2btb - 3 c f c  

S- = ( S + ) * = a a + U + 2 b + a + V % + b  
(38) 

and restricting ourselves to quadratic order, we obtain that, as a consequence of acci- 
dental degeneracy, the two-particle (b  boson) and three-particle ( c  boson) excitations 
undergo softening simultaneously at H = 38. 

The lowest-order renormalization is produced by 

H 3  = 2 V % ~ ( a : a t h b o  h +4da:b :co )yh  +HC. (39) 

The second-order corrections shift the critical fields to 

2(Hb - 38) - (12sz/h)1 = 0 

3(H,  - 38) - (9@/2h)I = 0 (40) 

where his an inverse effective mass and I is the same as in (37). It follows from (40) that 
the two-particle instability again passes ahead of the three-particle one, thus producing 
a continuous reorientation with spontaneous quadrupolar ordering surviving up to 
saturation. 

The case of S = 1 has already been solved in [1-4]. Below the instability, the ground 
state is a spin nematicwith aspontaneoussymmetry breakingwith respect to quadrupolar 
correlations only. The order parameter space is isomorphic to P2 and the low-energy 
sector contains two gapless excitations. 
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The reorientation proceeds continuously. In the presence of the field one of the 
excitations acquires a gap w = H ,  while the other remains gapless up to H = 26, the 
spin-flip field. 

3. Summary and discussion 

We have shown that the instability of a ferromagnetic state induced by a two-particle 
bound-state condensation produces different non-trivial phases. For S > 2 a ferro- 
inagneticconfigurationtumsintoaferrimagneticstatewith(S,) = S - 1;forS = 2, land 
3 the groundstate below the instability haszero net magnetization, while aspontaneous 
symmetry breaking is revealed in quadratic, cubic, or both quadratic and cubic cor- 
relations, respectively. 

It should be noted, in the case of S > 2, that a further deviation from the instability 
line of a ferromagnet may produce a set of successive first-order phase transitions 
with quantum jumps of (S,) by 1 and hence a step-like behaviour of the spontaneous 
magnetization. A simple calculation shows that the dipolar ordering will survive until 
(3,) is larger than 

where [ 
It is also worth noticing that in the I D  version of the problem the low S phases 

demonstrate a difference in fluctuation effects between integer and half-integer spin 
values. In fact, up to discrete degrees of freedom, which are inessential near the ferro- 
magneticinstabilityline[4], IheorderparametersforS = 1spinnematicandS = 2tensor 
magnet are in essence one or two mutually perpendicular unit vectors, respectively, and 
fluctuationeffectsareexactlythesameasinO(3)forS = landO(4)forS = 2omodels. 
Quantum Huctuationscompletelyrestore thesymmetry, producingasinglet groundstate 
with a gap immediately above it t .  In contrast, for S = 9 it is obligatory for the order 
parameter to contain a complex scalar. Though the number of low-energy excitations in 
the bare theory is the same as for S = 2, the order parameter space is now isomorphic 
to P, x S,, where P, comes from a spontaneous symmetry breaking with respect to 
quadrupolar correlators while S, results from that in X Y  cubic correlators. 

As was shown in [4], in the I D  case, the low-energy modes associated with different 
symmetry breaking decouple at large scales. Those associated with P, acquire a 
dynamically generated gap and thus leave the low-energy sector. The T = 0 behaviour 
thus turns out to be critical, as required 1171, and coincides with that in the anisotropic 
XY model. 

] denotes the integer part. 
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